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Abstract--The lateral phase distribution in bubbly flows in vertical ducts was analyzed using a 
three-dimensional two-fluid model. The constitutive relations of the model are based on analytic and 
experimental information on the behavior of a single bubble, and on the assumption of linear 
superposition of shear-induced and bubble-induced turbulence. 

The experiments chosen to test the model include available data for pipes and new data obtained in 
an isosceles triangular duct. While most of the data could be reproduced satisfactorily by the model, some 
could not. This is attributed to certain physical mechanisms that are still not well understood and therefore 
were not included in the constitutive relations. 
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1. I N T R O D U C T I O N  

The objective of this research was to advance the state-of-the-art in multidimensional two-phase 
CFD. In particular, to predict the lateral phase distribution for bubbly flows in ducts. One-dimen- 
sional two-phase flow methods have been widely used in the past for design calculations. The 
simplest was the homogeneous equilibrium mixture model (HEM). Such models have been 
upgraded by prescribing velocity and void distribution profiles, and the relative velocity between 
the phases. For example, the drift-flux model of Zuber & Findlay (1965). However, these models 
require a pr ior i  knowledge of the lateral distributions. Since these are not well known normally, 
it would be much better to perform multidimensional calculations with an appropriate two-fluid 
model. There are many applications in the power and chemical industries that could benefit from 
more accurate two-phase flow predictions. For example, the prediction of the local critical heat 
flux in the fuel rod bundles of nuclear reactors is an important calculation that normally determines 
the maximum allowable operating power. This calculation has been performed with subchannel 
computer codes such as COBRA (Wheeler et  al. 1986) which compute quantities averaged across 
the subchannel area. The transport processes within these subchannels are accounted for using 
algebraic correlations. As computers become more and more powerful, it appears feasible to 
perform more detailed calculations within a subchannel, however in order to do so with accuracy 
it is necessary to better understand the physical mechanisms that occur at this smaller scale. 

A rigorous development of the three-dimensional time averaged two-phase flow conservation 
equations has been given by Ishii (1975) and updated by Lahey & Drew (1990). The resultant model 
is called a two-fluid model. In addition to the Reynolds stresses, these conservation laws contain 
new interfacial transfer terms which result from the averaging process. Thus prior to numerically 
evaluating the two-fluid conservation equations, it is necessary to constitute the Reynolds stresses 
and the interfacial forces, such that closure is achieved. 

One of the earlier works on turbulence modeling in conjunction with a multidimensional 
two-fluid model was published by Drew & Lahey (1982) who applied mixing length theory to 
analyze phase distribution in bubbly pipe flows. They were able to qualitatively predict the effect 
of wall peaking in upward bubbly flows and void coring for downflows. Thus, it was shown that 
turbulence could be a dominant mechanism in lateral phase distribution. 

More elaborate computations of two-phase turbulence were performed by Lee et  al. (1989) who 
adapted the k-8 model for bubbly flow. Lopez de Bertodano et  al. (1990) extended this work to 
the z-e model to account for the effect of non-isotropy. However, at this time problems were 
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encountered with the low velocity flow computations (i.e. JL = 0.5 m/s). Because of this a new way 
to constitute a k ~  model for bubbly flows has been proposed (Lopez de Bertodano 1992). 

The effect of bubbles on the turbulent field is very important, since not only does the turbulence 
field in the liquid affect the distribution of bubbles, but the bubbles also affect the liquid phase's 
turbulence. Lance & Bataille (1991), who measured two-phase grid-generated turbulence and 
observed that for their data the kinetic energy of the single-phase grid-generated turbulence and 
the bubble-induced turbulence could be linearly superimposed. Theofanous & Sullivan (1982) made 
the same observation for their measurements at the centerline of a pipe at low liquid flow rates. 
However, Serizawa et al. (1986) and Wang et al. (1987), who measured the Reynolds stresses and 
phase distribution in bubbly pipe flows, have observed that at higher liquid velocities (JL ~> 1 m/s) 
the turbulence level in the center region of the pipe can be lower than for single-phase, that is, 
turbulence suppression was observed. Lopez de Bertodano (1992) obtained turbulence data and 
phase distribution data for a triangular duct, in order to further demonstrate the multidimensional 
capabilities of the two-fluid model. 

The other key issue in two-fluid CFD is the interfacial forces. The drag force on bubbles has 
been thoroughly investigated. Others like the virtual mass force and the lift force may be derived 
from first principles for inviscid flow (Drew & Lahey 1987, 1990). In particular, the lift force or 
any other force that acts in the lateral direction is very important to predict phase distribution. 
The behavior of these forces in viscous turbulent flows is not yet fully understood. However, Lance 
& Naciri (1991) performed an experiment in which they were able to measure lift on a bubble. 

The two-fluid model will be presented first. Then the constituted relations will be discussed. 
Finally, comparisons between computations experimental data for pipes and a triangular duct will 
be shown. 

2. MATHEMATICAL MODEL 

2.1. Two-phase mass and momentum conservation equations 

The Eulerian conservation equations for each phase may be averaged in various ways (i.e. time 
averaging, volume averaging, ensemble averaging). The result is known as the two-fluid model. For 
isothermal, incompatible gas-liquid flow without phase change, these averaged conservation 
equations are (Ishii 1975): 

Conservation o f  mass 

~ t E k " ~ £ k V ' l l k = O ,  (k = L,G) [1] 

where, the material derivative of phase k is given by: 

Dk d 
Dt - Ot + ilk" V [2] 

and where the subscript k refers to the liquid or vapor phases, the overbars indicate time-averaged 
quantities, the bold characters indicate vector quantities, Ek is the volume fraction of phase k, uk 
is the corresponding velocity and Dk/Dt is the material derivative of phase k. 

Conservation o f  momentum 

D fik 
EkPk--~- = (V" ek(Tk + Z~ e) + Pkg) + Mk [3] 

where, neglecting viscous stresses, the stress tensor for phase k is given by, 

T k + ~ = -- PkI -- pkU'kU'k [4] 

and the instanteous velocity of phase k is: 

Uk = Uk + n;, [5] 

The phasic density is Pk (assumed constant), Pk is the static pressure, g is the gravitational 
acceleration, Mk is the net interracial force on phase k, and the term -pku~u~, is the Reynolds stress 
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tensor. In the vapor momentum equation the Reynolds stresses are small in comparison with the 
pressure gradient and the interfacial forces, so they can be neglected. This assumption is good for 
low pressure air-water flows where the vapor density is relatively small. Hence, from here on, the 
subscript k in the term u~,u~, will be dropped with the understanding that this term corresponds to 
the liquid phase. 

The interfacial jump condition, neglecting surface tension, is: 

Mo + ML = 0 [6] 

In order to have a working two-fluid model it is necessary to constitute the interfacial forces and 
the Reynolds stress tensor, u[u[, for turbulent bubbly flow. 

2.2. Constitutive relations for interracial momentum transfer 

The interfacial force is customarily divided into several components, for example: drag, virtual 
mass, lift and the averaged interfacial pressure term: 

M L = M D + M~ m + M L + M e [7] 

Of all these, the drag force has been the most thoroughly investigated. The axial drag force per 
unit volume is given by: 

M D  3,,-, DL -- -- 
g = 4I"D Dbb EG UR a s  [8] 

where 

UR ~--- UG --  eL, 

D b is the bubble diameter and CD is the drag coefficient of the bubbles for which many correlations 
are available. 

The virtual mass force is expressed as: 

M~=CvmEGPL(-~tUG DL [9] - UL:  

where Cvm is the virtual mass coefficient which represents the inertia of the bubble-induced fluid 
flow. For potential flow around a sphere moving in helical paths potential flow theory and 
measurements (Lance & Bataille 1991) indicate that Cvm may be considerably higher, i.e. 

1.2 < Cvm < 3.4 [10] 

for 5 mm air bubbles rising in water. 
The lift force obtained from inviscid rotation.,1 flow theory is: 

M E = CL£GPLU R × V x B L [11] 

where CL = 1/2 for flow around spheres and more generally CL = C~m for other geometries. The 
experiment performed at the Ecole Centrale de Lyon by Lance & Naciri (1991) for single bubbles 
in a rotating tank indicate that CL -~ 1/4 for a wide range of sizes smaller than Taylor bubble sizes. 

Near a wall the velocity distribution around the bubble changes so the lift force is expected to 
vary. To account for this Antal et al. (1991) has proposed a wall lift force: 

liRl~n [12] ME w = Cwl d- Cw2 £GPL Rb w 

where Rb is the bubble radius, nw is the outward normal to the wall and y is the distance from the 
wall. In order to find values for the coefficients Kurul  (1991) performed CFD calculations of a 
sphere close to a wall and obtained Cwl = -0 .1  and Cw2 = 0.147. This lubrication-like l i f t  force 
arises in the thin layer between the bubble and the wall. In contrast, the lift force discussed 
previously is caused by inertia and is based on potential flow theory. It is possible that a viscous 
lift force is also present, however for the type of bubbles of interest (i.e. Reb ~ 1000) inertia 
predominates. Given the complexity of the phenomenon, the simplest theory was used as long as 
it captured the relevant physics. 
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Both the turbulence and the relative velocity affect the instantaneous pressure at the interface. 
The effect of turbulence is not properly understood yet. The effect of the average relative velocity 
on the other hand is clearer. The simplest possible case is for potential flow around a sphere (Lamb 
1932): 

PLi ~- PL - -  Cp ~G P g I/~R I 2 [ 13] 

which is used to constitute the interfacial pressure term: 

ME = --t/~Li V• L ~- (/OLi - -  f iL)V£L "3L fiE VEL [14] 

where the pressure coefficient, Cp is 0.25 for non-interacting spherical bubbles. If the bubble is not 
spherical, then Cp > 0.25. In the case of a wake behind the bubble, the flow is practically potential 
until the point where separation occurs. Since the pressure at the rear cannot recover up to the 
stagnation value (which is higher than the liquid average pressure), the pressure averaged over the 
interface must be lower than for potential flow, and so again, Cp > 0.25. 

Real bubbles are a combination of these effects, so values of Cp significantly greater than 1/4 
may be expected. For example, using the data of Lance & Bataill¢ (1991) for the shape and 
trajectory of 5 mm oblate spheroid bubbles moving in helical paths in water, and the potential flow 
analysis of Saffman (1956) it may be shown: 

0.5 < Cp < 0.7 [15] 

If the effect of a wake is considered these numbers should be even bigger. Unfortunately there 
is no accurate way to account for the effect of a wake on the pressure distribution around a bubble 
(Fan & Tsuchiya 1990). 

2.3. Constitutive relations for the Reynolds stresses 

The key assumption made to model the two-phase bubbly flow turbulence in the liquid phase 
is that the shear-induced turbulence and the bubble-induced turbulence are weakly coupled. 
Therefore they can be superposed linearly. This approximation is expected to be most valid for 
dilute bubbly flows. Thus the Reynolds stress tensor for the continuous liquid phase may be written 
as~ 

ZLR~_ Re +Z ge [16] - -  "C L(BI) L(SI) 

The bubble-induced turbulence is calculated from the potential flow around a single bubble 
(Nigrnatulin 1979). The general form for "CL(BI)Re is given by: 

ge [17] Z L(m) = 2A(B,)kL(m) 

where kL(m) is the kinematic energy associated with the perturbation of the liquid flow induced by 
the bubbles and A(B~) is the anisotropy matrix, which is a function of the shape and the trajectory 
of the bubbles. 

For the bubble-induced turbulence, the anisotropy matrix for potential flow around a sphere was 
used, i.e.: 

/4/10 
A(~,)=/ 0 ° 

The shear-induced part is written as: 

3/10 
0 3/10 

[18] 

17 L(sI)Re = V~. ( V ~  L .at_ V ~ L  T) .at_ 2Atsl)kL(st) [19] 

where v[ is the turbulent viscosity in the liquid, kL(sl ) is the turbulent kinetic energy associated with 
the shear-induced turbulence and Ats~) is an anisotropy matrix for the shear-induced turbulence. 
In the calculations performed for the triangular duct, the anisotropy of the turbulence had to be 
taken into account in order to capture the recirculating flows. This can be achieved by using the 
~-e model (Lopcz de Bcrtodano et al. 1989). Due to the early stage of development of the two-fluid 
model a simpler algebraic stress model (Naot & Rodi 1982) was adopted here. 
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The modeling of  kL(sl ) used is based on the standard k-e model (Launder & Spalding 1976), i.e. 

DE 
EL - ~  kusl) = V" EL(V}. Vkusl ,) + (PL -- eL) [20] 

where the turbulent dissipation rate e L is given by: 

- -  V " W L  + eL 

and PL is the turbulence production rate: 

PL = V}.(V~L + v i r )  :VUL. [22] 

The constants C~1, Ca, a~ are specified as in the standard single-phase flow k-e model: a~ = 1.3, 
C~1 = 1.44, Ca = 1.92. 

Lopez de Bertodano (1992) introduced an additional transport equation for the bubble-induced 
turbulent kinetic energy: 

D E 1 
eL ~-~ kLein) = V" eL(V}. VkLtBI)) + - -  (kL¢Bl), -- kual)) [23] 

TBI 

where kLtB,), is the asymptotic value corresponding to the kinetic energy brought to the liquid by 
bubbles rising at their terminal velocity. Here, ~BI is the bubble relaxation time: 

ZBI = 2Rb/UT [24] 

R~ and UT standing respectively for bubble mean radius and terminal velocity. 
In most practical situations, zm is very small, so that the equation for the bubble-induced 

turbulence reduces to kL~al)= kum),, which is the equation used by Lance & Bataille (1991). 
According to potential flow theory: 

kL(Bl)a = / ~ G  PL CvM I fir 12 [25] 

The experimental value obtained for Cvu independently by Lopez de Bertodano (1992) and Lance 
& Bataille (1991) was approx. 2, which lies between the theoretical limits prescribed by [10]. 

In the single-phase k-e model, the turbulent viscosity is expressed by: 

v[ = C~ k~sl) [26] 
~L 

where C~ = 0.09 (Rodi 1984). Sato (1981) proposed to calculate two-phase viscosity by linear 
superposition of  the shear-induced and bubble-induced turbulent viscosities, which, for a k-e  
model, leads to: 

vL = C~ k~sl) + C~bRbEGIV~I [27] 
8L 

with C~b = 1.2. This is equivalent to adding the shear stresses and is thus fully compatible with [16]. 
The turbulence in the dispersed gaseous phase may be neglected provided that PG '~ PL. Then 

the stress tensor given in [4] simplifies to 

TG = -- PGi I = -- PLi I [28] 

neglecting the effect of  surface tension. 

2.4. Interracial structure 

The most important shortcoming of the current two-fluid model is that it cannot predict the 
interfacial structure (e.g. the bubble size distribution); rather, the mean bubble size is an input. 
Moreover, the model is only valid for monodispersed bubbles. However, a multigroup model could 
be devised by adding a set of  interacting conservation equations for each bubble size group. Then 
different constitutive relations could be applied, as necessary, to these groups. 
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2.5. Boundary conditions 

From a physical point of view the correct velocity boundary conditions for steady flow in ducts 
are: 

(i) for the liquid phase the distribution at the inlet and the no slip condition at the walls. 
(ii) for the gaseous phase the condition at the walls depends on whether or not the viscous 

term is retained in the momentum equations. If  not, then the "no slip" condition must be 
replaced by the potential flow boundary condition (i.e. zero velocity normal to the wall). 

For the void fraction, EG = 1 -- EL, the distribution at the inlet is sufficient. This may be explained 
in terms of the continuity equation of the gaseous phase, [1]: in principle, given the velocity field, 
it may be solved for the void fraction along the characteristics which start at the duct inlet. 

If  a numerical solution is performed, it is impractical to use the no slip condition because the 
necessary mesh size would be too small. Instead the velocity tangential to the wall is specified at 
some distance away from the wall as in single-phase turbulent flow, i.e. the logarithmic law of the 
wall is used in the buffer zone. 

Mari6 found that for bubbly flow the law of the wall is still valid but is slightly shifted. The 
present data indicate that the slope changes too (see figure 1). Nevertheless, for simplicity, in this 
study the single-phase logarithmic law was used as the liquid momentum boundary condition: 

ff__kL = 1 
u ,  ~ l n y ÷ + b  [29] 

where 
yUL [30] u ,  = , y+ = , 

U JOE UL 

x = 0.435 and b = 5.4. The Reynolds stress boundary conditions are given by Launder et al. (1975): 

(,.1 o 1:/ 
, , 2 [31] ULUL = 0 2.3 U, 

\1.0 0 1.0/ 

so the kinetic energy is obtained from the trace of this equation: 

k L = 4.2u2, [32] 

Finally, the dissipation boundary condition is also given by Launder et al. 0975): 

~L =--U3* [33] 
gy 
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Figure 1. Boundary layer velocity measurements for single- 
phase and two-phase flow, logarithmic scale. 
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Figure 2. Effect of  radial mesh refinement on void distri- 
bution. 
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This set of constitutive equations and boundary conditions is not completely definitive. However, 
it does contain all the relevant mechanisms that have an effect on the motion of the bubbles at 
low liquid flow rates. On the other hand, at high liquid flow rates there appear to be other 
mechanisms that are not included. For example, the diffusion of the bubbles by the shear 
induced-turbulence field. Relatively simple constitutive relations were chosen in this study. As 
modeling uncertainties are resolved the advantage of more elaborate constitutive relations should 
become more clear. 

3. RESULTS 

3.1. Numerical method 

The two-fluid model closure laws were implemented into the PHOENICS code (Spalding & 
Norton 1987). For the case of steady state fully developed duct flows an efficient computational 
strategy is to neglect axial diffusion so the problem becomes parabolic with axial distance as the 
time-like variable. This works provided that there is no flow reversal. Then a marching method 
can be used starting at the inlet and the flow variables evolve similarly to the developing flow in 
a duct. The similarity is not complete because axial diffusion has been neglected, but once fully 
developed flow is attained this difference does not matter. 

The appropriate boundary conditions at the inlet and at the walls have beeen discussed already. 
For the parabolic scheme no boundary conditions are necessary at the outlet. 

Mesh refinement tests were carried out for the pipe computations. Results of the effect of mesh 
size on void distribution for a particular case are shown in figure 2. 

3.2. Flow in pipes 

There is a considerable amount of bubbly two-phase flow experimental data in pipes. High 
amplitude void peaks near the wall have been observed in many cases. Among these the data of 
Serizawa et al. (1986) and Wang et al. (1987) are particularly useful since they include Reynolds 
stress measuremnts performed with multiple-sensor hot film anemometers. Comparisons of 
computations and data for these and other cases follow. 

Figures 3 to 6 show a comparison with Serizawa's data forjL = 1.36 m/s andjG = 0.077 m/s. The 
pipe diameter was 2 in. and the length-to-diameter ratio was L/D = 43. The amplitude of the wall 
void fraction peak was matched with CL = 0.1 (see figure 3). The bubble-induced turbulence, which 
was the dominant component of the turbulence at the center-line, was predicted with CVM = 2.0 
(see figure 5). In accordance with the result for potential flow around a sphere the pressure 
coefficient was set to Cp = ½ CVM. This is an interesting case because the two-phase turbulence 
intensity is lower than the corresponding single-phase intensity, which may be explained in terms 

0.25 - 

0.20 -- 

0.15 -- 

0.10 -- 

0.05 -- 

Model 

Serizawa's data 

JL = 1.36 m/s 

JG = 0.077 m/s 

[] [] o [] 

I i I i 
0 0.2 0.4 0.6 0.8 1.0 

HR 

Figure  3. C o m p a r i s o n  with Ser izawa 's  data:  void fraction. 
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Figure 6. Comparison with Serizawa's data: shear stress. 

of figures 4 and 6. From these figures it is seen that for two-phase flow the velocity profile is flatter 
and the shear stress is lower so the production of shear-induced turbulence, PL = -- U'V'dfiL/Or, is 
significantly reduced and the contribution of  bubble-induced turbulence cannot make up the 
difference. Figure 6 also shows the effect of  Sato's model for bubble-induced viscosity on the 
computed shear stress. 

The same values of CL, CVM and Cp were used in the comparisons with Wang's data. Figure 7 
shows a downflow case with JL = 1.08 m/s and Jo = 0.1 m/s. The pipe diameter was 2 in. and 
LID = 40. Since the effect of turbulence is to create a gradient that pushes the bubbles toward the 
wall this case is further evidence that an additional lateral force (i.e. lift) is at work. 

Figures 8-12 show comparisons with two cases of  Wang's upflow data: JL = 1.08 m/s with 
Jc = 0.10 and 0.40 m/s. The latter is a high void fraction case well beyond the domain of validity 
of the assumption of  weak coupling between shear-induced and bubble-induced turbulence. 
Nevertheless, the results of  the model are quite good. In particular, the void fraction distribution 
(figure 8), is reproduced well. For the normal Reynolds stresses atjo = 0.40 m/s (figure 11), a lower 
value of the virtual mass coefficient had to be used, i.e. Cvm = 2Cp = 1.2, which is the lower bound 
given by [11]. This is an indication that for high void fractions the bubble-to-bubble non-linear 
interactions affect the bubble-induced turbulence. Also the non-isotropy predicted by the model 
is less than the measured non-isotropy. The comparison with the shear stress data (figure 12) is 
not good. Wang's shear stress data looks different from the data of Serizawa et al. (1986) and Lopez 
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Figure 9. Compar i son  with Wang ' s  upflow data: average Figure 10. Compar i son  with Wang ' s  upflow data (1987): 
axial velocity, velocity fluctuations, j~ = 0.1 m/s. 

de Bertodano et  al. (1992). The latter two used X-sensor probes which are specifically designed for 
this purpose whereas Wang used a three-sensor conical probe. The discrepancies shown in figure 
12 may be caused to some extent by this. 

Not all comparisons with void fraction data are successful. Recent data by Liu (1991) clearly 
indicate the effect of bubble size on phase distribution which the present closure laws do not 
consider. Comparisons are shown on figure 13 for J6 = 0.2 m/s. The pipe diameter is 2 in. and 
measurements were made at L I D  = 30, 60, 90 and 120. Below L / D  = 120 the two-fluid model can 
predict the void peak. But at L / D  = 120 the void peak practically disappears and the only way 
to match its amplitude is to reduce the lift coefficient to CL = 0.02. Apparently the growth of the 
bubbles, as the hydrostatic head decreases and coalescence takes place along the pipe results in a 
significant change in the lateral lift force. 

The sensitivity of the model to the coefficients of the constitutive relations and other model 
parameters may be significant. Figure 14 shows the effect of the lift coefficient. It is clear that for 
this case lateral lift is dominant compared to turbulence effects. At higher velocities turbulent 
diffusion plays an important role and the void peak decreases. 

Figure 15 shows the sensitivity of the void distribution to bubble size. In this model the effect 
of bubble size is only limited to the wall force. In fact, this is the only constitutive relation in which 
it appears explicitly. It could also affect the lift force and the interracial pressure force if the relative 
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velocity, or the shape of the bubble, were to change. However, the rise velocity of bubbles between 
2 and 10 mm in diameter is practically constant and the bubble shape does not influence model 
prediction unless the value of  the closure coefficients are changed. 

Figure 16 shows the effect of the interfacial pressure coefficient, Cp. The interfacial pressure force 
acts like a diffusive force. The physical interpretation is that the pseudo-turbulence and the 
wake-induced turbulence of a bubble affect the trajectory of  the surrounding bubbles. The 
important thing is that these coefficients have physical meaning and they can be assigned proper 
values in terms of  mechanistic arguments. 

3.3. Flow in a triangular duct 

Lopez de Bertodano (1992) obtained bubbly upfiow data in a triangular duct with 2 in. base, 
4 in. height and L/D = 70. The liquid velocities were 0.5 and 1.0 m/s. He used an X-sensor hot film 
probe to measure Reynolds stresses. The purpose of the experiment was to obtain data to test the 
two-fluid model in a nonaxisymmetric geometry. 

Comparisons between the model and data forjL = 1.0 m/s andjc  = 0.1 m/s andjc  = 0.6 m/s are 
shown in figures 17-21. These computations were performed with the same values of  CL, Cvm and 
Cp used for the pipe calculations. In particular, Cvm = 2.0 was used for the low void fraction 
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calcuations and Cvm = 1.2 was used for high void fraction cases. In general, the model predictions 
for void fraction and velocity agree with the data. 

The computed shear stress with and without Sato's model is shown in figure 21. The benefit of 
including the two-phase viscosity is not as clear as in the case of Serizawa's pipe data (figure 6). 

The effect of recirculating flows on void distribution was investigated. This was the reason to 
introduce anisotropy in the turbulence model. Figures 22 and 23 show the model results for the 
recirculation in single-phase and two-phase flows. The presence of the bubbles causes a reduction 
in the lateral turbulence gradient so the lateral pressure gradient and consequently the recirculating 
velocities must decrease. 

4. CONCLUSION 

A two-fluid formulation of two-phase flows has been used to numerically predict bubbly flows 
in two different situations (a pipe, and a triangular duct). The obvious conclusion to be drawn from 
these numerical simulations is that proper mechanistic closure laws lead to realistic predicitons for 
the geometries adopted here. The CFD code used for single-phase flow proved to be able to deal 
with the equations of the two-fluid model, at least for simple situations. The closure laws were 
obtained from basic fluid dynamic analysis of the flow around a single bubble. The shear-induced 
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turbulence was calculated using the well-known k-e  model for single-phase flows. Therefore, the 
number of  adjustable parameters were limited, and these can be related to measurable quantities, 
such as the virtual mass coefficient and the lift coefficient. It  is worth noting that, although these 
closure hypotheses were expected to be restricted to low void fraction, reasonable agreements with 
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experiment were achieved for high void fraction bubbly flows. Nevertheless, these calculations 
indicate that a better understanding of basic mechanisms is still required. 

(a) Turbulence 
The turbulence models which have been tested here are based on linear superposition, the 
assumption that the coupling between shear-induced and bubble-induced fluctuations is 
weak, which is likely not the case for high void fraction. Unfortunately, non-linear 
coupling has not yet been modeled. 

(b) Interfacial momentum transfer 
The nature of the interfacial force is not well understood. For the lift coeflicient, a value 
of 0.1 resulted in good comparisons with most of the data. However, a value of 0.02 was 
necessary to match the low amplitude void fraction peak measured by Liu at LID = 120. 
This result may be due to an effect of the bubble size on the mechanism of lift, although 
this process is not well understood. Moreover, at present it is still impossible to predict 
the evolution of the size distribution of a population of bubbles under the effect of 
turbulence, interfacial forces and mutual interactions. Furthermore, the effect of turbu- 
lence on lift, as well as on the other forces, is not clear either. 

The interfacial force near a wall is another topic which requires further studies. 
(c) Boundary conditions 

The choice of appropriate boundary conditions is crucial in many problems. In particular, 
when transport phenomena at the wall are of interest. The experiments by Mari6 (1987) 
show that a modified law of the wall can be adopted for low void fraction without phase 
change. However, this might not be true as the void fraction increases, due to the existence 
of a second length scale imposed by the bubble size. The extension of the two-fluid model 
to boiling bubbly flows requires a detailed investigation of the structure of the boundary 
layer when the bubbles are produced at the wall. 

Even though the problems pointed out above have yet to be solved, significant progress has been 
achieved during the last few years in the prediction of phase distribution for bubbly flows. 
Multidimensional CFD for two-phase bubbly flows is beginning to look feasible. 
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